Civil Engineering and Architecture

Engineering and Science:

Engineering (Technology) is:
  • the invention of things that did not previously exist
  • creation of specific objects
Science is:
  • the discovery of things that have long existed
  • creation of general theories that unify knowledge
To what extent does technological innovation flow from scientific discovery?
Designers of Three Dimensional Public Spaces
  • Architects
  • Structural Engineers
  • Sculptors
3 Measures of Design Performance:
Efficiency
  • Scientific Dimension.
  • Use of Minimal Natural Resources.
  • Form Controls the Forces.
  • Form Changes the Actions & Reactions.
Economy
  • Social Dimension.
  • Use of Minimal Public Resources.
  • Must Consider Material Costs & Constructibility.
  • Dependant upon Time & Place.
  • •Quantities are measurable but….labor & bidding process are not.
Elegance
  • Symbolic Dimension.
  • Aesthetic Motivation of the Designer.
  • Aesthetic ideas can be traced back to the earliest forms of architecture.
  • Theories on the importance of structural expression and construction techniques.

Architect – the beginnings:

  • The architect of a structure was also supposed to be the engineer, combining knowledge of geometry and materials with artistic expression.
  • In medieval times this remained true, with the concept of the architect as the “master builder”.
  • Even in the Renaissance, the ideals of Science and Beauty went hand in hand and engineering was considered to be a part of art.

Architect – the master builder:

  • Imhotep
  • Ictinus & Callicrates
  • Vitruvius
  • Michelangelo
  • Da Vinci
  • Filippo Brunelleschi
  • Bernini
  • Palladio

Changes during the 19th century

  • Before 19th century, structural forces understood only in empirical terms (observation and experiment)
  • Late 18th century – exact knowledge began to replace guesswork
  • Late 19th century – science of statics – architecturally viable
  • Structural calculations intrinsic to the employment of iron skeletal construction

The Industrial Revolution

  • New methods of structural design created and put into practice by members of a new profession – civil engineers who were previously military engineers
  • Structural expertise removed from the domain of architects
  • Mid and late 19th century – spectacular advances made by civil engineers
Schism – the split:
  • Pre-schism architect was the “Master Builder”
  • Separation between architect, engineer and constructor

What lead to the schism:

Industrial Revolution introduced new materials, methods and aspirations
Specialized schools were established
  • Ecole de Beaux Arts & Ecole de Polytechnique
  • ETH, Zurich
Architectural curricula focused on:
  • visual methods
  • product
Engineering curricula focused on:
  • numeric methods
  • process

Civil Engineers – their contributions

  • John Augustus Roebling
  • Alexandre Gustave Eiffel
  • Pier Luigi Nervi
  • Robert Malliart

John Augustus Roebling (1806 – 1869):

  • Born in Prussia, he emigrated to the United States in 1831.
  • He graduated with a degree in civil engineering from the Royal Polytechnic Institute of Berlin in 1826.
  • In 1841, he invented the twisted wire-rope cable, an invention which foreshadowed the use of wire cable supports for the decks of suspension bridges.
  • As the cable could support long spans and extremely heavy loads, he quickly gained a reputation as a quality bridge engineer.
  • Roebling utilized steel cables in the construction of numerous suspension bridges and is generally considered one of the pioneers in the field of suspension-bridge construction.

Roebling’s Projects:

  • The Brooklyn Bridge, New York, 1869 – 1883.
  • The Niagara Rail Bridge, 1841 – 1855 .
  • The Cincinnati – Covington Bridge, 1856 – 1867.

The Brooklyn Bridge, New York, 1869 -1883:

  • Overall width: 85 feet
  • Total length: 5,989 feet
  • Length of approach: 971 feet (Brooklyn approach) & 1,562 feet, 6 inches (Manhattan approach)
  • Length of main span: 1,595 feet, 6 inches
  • Number of supporting cables: 4
  • Diameter of  each cable: 15 ½ inches
  • Ultimate strength of a cable: 11,200 tons
  • Weight of each cable: 3,272 tons

Alexandre Gustave Eiffel (1832 – 1923)

  • He was born in Dijon France in 1832.
  • Later, he graduated from the Ecole Centrale des Arts et Manufactures, Paris in 1855 and joined a Belgian firm which specialized in railway equipment.
  • He established an independent practice in 1864 after which he established a career as an engineer-contractor.
  • Eiffel was a master of elegantly constructed wrought-iron lattices.
  • The structures that Eiffel designed had great social, economical, and political impact on the world. These structures include the Eiffel Tower, the Panama Canal, and the Statue of Liberty.

Eiffel’s Projects:

  • The Statue of  Liberty, 1884.
  • The Eiffel Tower, Paris, 1889.
  • The Panama Canal, 1904 – 1914 .

The Eiffel Tower, Paris, 1889:

  • It was built for the Paris World’s Fair of 1889.
  • This metal skeletal structure of 15,000 metal parts has both rectilinear and curvilinear ornamentation in iron.
  • Eiffel designed it as a cross-braced latticed girder with minimum wind resistance.
  • Constructed from over 6300 metric tons of highest quality wrought iron, it is a masterpiece of wrought-iron technology.

 The Panama Canal, 1904 – 1914:

  • Panama Canal, canal across the Isthmus of Panama, in Central America, that allows vessels to travel between the Pacific and Atlantic oceans.
  • The waterway measures 64 km, including dredged approach channels at each end.
  • The canal’s 12 locks (3 sets of double locks at each end) have the same dimensions: 33.5 m (110 ft) wide by 305 m (1,000 ft) long.
  • The gates at each end are 2.1 m (7 ft) thick.

Pier Luigi Nervi (1891 – 1979)

  • He was born June 21, 1891, in the Italian Alps town of Sondrio, Italy.
  • Nervi studied in the Civic Engineering School at the University of Bologna and joined the army engineering corps following the entanglement of Italy in World War I.
  • After the war was over, he joined a group called “The Society for Concrete Construction” and later established his own firm in 1920.
  • It was not until after Nervi left the group in 1923 that his unique approach to building garnered critical attention.

A builder and designer of new forms

  • “..searching for solutions that were intrinsically and when constructed the most economic.”
  • Primarily an engineer and technician, not an architect
  • Strove primarily for “strength through form.”
  • Maintained that the strong aesthetic appeal of his buildings was simply a by-product of their structural correctness.
  • The ceiling are the most awe inspiring part of his structures, described in words like “sunburst” and “lacework” (or the more technical cantilevered roof trusses and lamella vault)
  • He combined technical expertise, intuition, pragmatism, and a material of his own invention- “ferro-cemento”- to achieve structural beauty in a tradition of Italian design.

Nervi’s Projects:

Vaults:

  •  Air Force Hangar I, 1936.
  • Salone Agnelli B, Turin, 1949.

Domes:

  • Palazzetto dello Sport, Rome, 1959

 Palazzetto dello Sport, Rome, 1959:

  • The innovative dome is made of ribbed reinforced concrete.
  • Continuous windows circle around the arena under the dome.

Robert Maillart (1872 – 1940)

  • Robert Maillart, a Swiss engineer, was renowned for his inventive and beautiful reinforced-concrete bridges.
  • Maillart’s basic structural principles—integration of the supporting arch, the stiffening wall, and the traffic platform into one cohesive unit—were applied as early as 1901 in a bridge at Zuoz, Switzerland.
  • Robert Maillart had an intuition and genius that could entirely exploit the aesthetic of concrete.
  • He designed three-hinged arches in which the deck and the arch ribs were combined to produce closely integrated structures that evolved into stiffened arches of very thin reinforced concrete and concrete slabs.
  • These designs went beyond the common boundaries of concrete design in Maillart’s time.
Methodology:

  • Scientific Analysis
  • Visual Analysis
  • Empirical Analysis
Role of the Architect Today:
Owens Corning HQ, Toledo, Ohio.
  • CM & CBP team
  • exterior architect
  • interior architect
  • production drawing architect
  • curtain wall architect
  • engineering disciplines
  • construction manager

Role of the Engineer Today

  • technician vs. innovator
  • synthesis of scientific & empirical knowledge
Relationship – Engineering & Architecture

  • Pre-schism
  • Collaboration
  • Synthesis
Collaboration:
  • a close working relationship between individuals from different backgrounds
  • mutual respect
  • common vocabulary
Synthesis

  • Can there be a modern day “master builder”?
    Nervi, Candela, Wright, Rogers, Calatrava
  • Can we transfer technologies and solutions from other disciplines?
    NASA – composites, ceramics, polymers
  • Can the synthetic process be a redefinition of the problem? 

    Traditional process

  • client, architect, builder
  • design – bid – buildOwens Corning Process
  • CM hires specialized disciplines
Synthetic process – a skillful coordination

  • Specialists and manufacturers are taking a bigger role in the process
  • Maki, Fujisawa, Gymnasium Roof
  • Foster, Hong Kong Shanghai Bank

This slideshow requires JavaScript.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s